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Abstract-A numerical method of evaluation of the energy-release increment resulting from the crack
propagation in the elastic body is proposed. The method h based on the extremum principles established
for the elastic-perfectly plastic body. An example of calculation of the upper and lower bounds for the
energy released in edge-erack specimen is given.

I. INTRODUCTION

The problem of bounds in numerical calculations of the energy-release"l'ate is of great interest in
fracture mechanics. Bui [1] has indicated that the standard variational approach to the
particular energy-release problem for the elastic body does not give satisfactory results.
Namely, the bounds obtained for the potential energies before and after the considered crack
propagation are not of great value to calculate the bounds for the energy-release rate,

In the present work we shall evaluate the energy-release increment for nonhomogeneous
elastic body using the extremum principles established by Rafalski [2] for the elastic-perfectly
plastic body. In particular we shali calculate upper and lower bounds for the energy-release
resulting from uniform tension of rectangular specimen with a crack.

2. FORMULATION OF THE PROBLEM
We consider 3-dimensional region V bounded by sufficiently regular surface B. The

boundary B is decomposed into the surface BK, where the displacements uB(x) are prescribed
and the surface Bs, where the tractions TB(x) are prescribed. The prescribed initial and final
material properties of the body occupying the region V will be referred to as body 0 and body
1, respectively.

The energy-release increment resulting from the transition from body 0 to body 1 is defined
by

(1)

and expresses the difference between the increment of energy stored in the material and the
increment of energy supplied from outside. Here Wo(E, x) and W.(E, x) are prescribed free
energy functions for body 0 and body 1, respectively, defined for all strain tensors E and all x
from V. It is assumed that these functions are convex and differentiable with respect to E and
that they attain their minima at E =O. The functions eO(x) and el(x) represent the actual strain
functions in body 0 and body 1, respectively, and uO(x), ul(x) are corresponding displacement
functions.

The strain and stress functions introduced above satisfy the constitutive relations

ul(x) = aW.(E, x) I in V
iJE e=e'(xl
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the kinematic conditions
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and the static conditions

u?=u?,

(3)

(4)

in V

onBs

(5)

(6)

where n is the unit vector normal to the boundary B and taken as positive outwardly.

3. UPPER AND LOWER BOUNDS

To calculate the bounds for the energy-release increment we introduce a family K of
kinematically admissible strain functions i(x) defined in the region V, i.e. the functions which
can be derived from the displacement function u(x) {iij = 1/2(iti•j + itj.i ) in V} and satisfy the
boundary condition iti = u? on BK• We also introduce.a family S of staticall'}' admissible stress
functions 6(x), i.e. the functions which satisfy the equilibrium equation iiii.; =0 in V and the
boundary condition iiijnj = T~ on Bs.

It follows directly from the extremum principles [2] established for the elastic-perfectly
plastic body that the.upper bound ~u and the lower bound ~, of the energy increment AE for the
considered elastic problem are expressed by

~u = inf {Iv [WM, x) - E . 6 + W~(6, x)] dV : EE K, 6 E S} (7)

(8)

whe~e W~(u, x), and WT(u, x) denote the functions polar (see [2]) to Wo(E, x) and W,(E, x),
respectively.

4. APPLICATION TO CRACK PROPAGATION

The evaluation of the energy-release increment presented above can be applied to the crack
which propagates in non-homogeneous elastic body. The technique of calculation will be
presented with the simple example of edge-crack specimen in tension by uniform displacement
(compare with the example in [1]). The rectangular region V(O ~ Xl ~ b, -I ~ X2 ~ I) of unit
thickness containing two triangular subregions Voand VI (VoC VI C V) (see Fig. 1) is extended
uniformly (the vertical component of the displacement uB is equal to eo). Body 0 is charac
terized by sectionally constant free energy function

w:( ) -j 0 ifxE Vo
oE,X- 1 E

--- (E'.I''' +-"-E.. E") otherwise2 1+v '1-') t - 2v II II

(9)

where E is the Young modulus and v is the Poisson's ratio. Hence the region Yo, determined by
the dimensions ao and h, represents the initial shape of the crack. The final shape of the crack is
here represented by region VI> determined by the dimensions aj and h. Consequently the free
energy function for body t is defined by

W ( ) -1 0 ifx E V I
I f,X - 1 E " .

'2 t + v (Ei j Eij + t _ 2v Eii Ejj) otherWise.

(0)
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Fig. I. Edge-crack specimen in tension by uniform displacement.

To calculate the bounds we define two families K m, m = 0, I of kinematically admissible
strain functions i(x) characterized by free parameter e which detirmines the displacement
W = heo +(I - h)e of the point [0, h) (see Fig. 2). It is assumed that the deformation of the
region V is sec'tionally homogeneous, i.e. that every triangular subregion Vm' V':', V~ as well as
the remaining part of V are subjected to homogeneous deformation and that Ell = E33 = - vE22'
EI3=£23=0.

We also define two families Sm, m = 0, I of statically admissible stress functions u(x)
characterized by free parameter p

_ () { 0 if xI < am
0'" X = .•• p otherwise

UiJ(X) =0 in V excluding i = 2, j =2.
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Fig. 2. Kinematically admissible deformation.
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Making use of the fact that the specimen is symmetric with respect to axis x, we obtain for
i(x) E Kmand u(x) E Sn

where

and

Iv iu dV =2bIE(} - un)peo

am
u =

m b

(12)

(13)

(14)

Substituting (12)-(14) into (7) we obtain the upper bound for the energy release increment
corresponding to the crack tip propagation from [0, ao] to [0, al]

(15)

The upper bound is attained in the spaces K1 and 50 at p = Eeo and e = eo(l/} + AI)' Similarly
we obtain the lower bound substituting (12)-(14) into (8)

(3, = ~ blEe~ {[1- (1 -11) }~oAJ Uo - 2ul}'

The lower bound is attained in the spaces Ko and 51 at p = Eeo and

}
e = eo 1+ Ao'

In the particular case of the plane crack (11 =0) we obtain the inequality

(16)

(17)

5. CONCLUDING REMARKS

It should be noted that the spaces Km and 5n introduced in Section 4 are extremely poor as
each of them contains only one free parameter. Consequently the result (17) should be
considered as a rough approximation. Indeed, assuming that body 0 has no crack (ao =0), we obtain
for arbitrary al

(18)

It is obvious that more precise evaluation of the energy increment requires more complex
spaces of kinematically and statically admissible functions which would provide better
approximation of the strain and stress distributions in the specimen. To construct the space of
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kinematically admissible strain functions the standard finite-element technique can be directly
used.
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